51 research outputs found

    Powerline Communication in Home-Building Automation Systems

    Get PDF
    Domotics, Smart Home Systems, Ambient Intelligence are all terms that describe the intelligent cooperation of several different equipments to manage the home environment in an intelligent, safe and comfortable way. The same idea is also applicable to bigger constructions, and in that case it takes the name of Building Automation. Whatever term one wants to use, it refers to a multidisciplinary field that includes informatics, electronics, automation and telecommunication, and also touches fields like building constructions and architecture. In fact, during the process of designing a building, people have to consider appropriate spaces for the electric plant, and if the presence of a domotic system is planned, it is better to take it into account during the design phase, just to optimize spaces, the amount of used wires, the position of the modules and so on. There are really many home system producers in the world (Smart Home Systems, EIB-Konnex, Lonworks, Bticino, Vimar, Duemmegi, EasyDom Corporation, Futurware, Digital Cybermasters, Hills Home Systems, Intellihome etc, just to mention a few) , and their products differ from each others in many characteristics, such as functionality, dimension, weight, typology of installation, materials, net topology, power consumes, aesthetic appearance, communication protocol and communication mean. Regarding this last point, the majority of the domotic systems, especially in Europe, tend to use a dedicated bus cable to exchange data among modules, to make the communication link more robust and reliable. Lately, using radio communication is in fashion, but radio modules, respect to their equivalent standard ones, are more expensive, and in the bargain many people don’t want to use them due to the fear of radio signals (even if it were proved that they are completely harmless). Another communication mean, that is often not taken into account, is the powerline. In point of fact, using the installed poweline wires to send information is a very smart idea: there is no additional cost to install other dozens of meters of wires, there is not the necessity to break the walls and to do building works at home, there are no interferences with other devices (like in the radio communication case) or reflection problems (like in the infrared case), there is the possibility to put the modules in every place (it is sufficient to have an electrical socket in the nearness, or to use an extension cable), there is no need to have an extra power source (usually, in a bus cable domotic system, there is a direct voltage generated by a power supply and distribuited on the whole domotic net). Moreover, powerline communication (PLC, also called BPL in the USA, where the acronym stays for Broadband over Power Line, or NPL, Narroband over Power Line) is not only used in a home environment to create a virtual net among domotic modules, but is also used on the power distribution net to perform actions like reading the electricity meter, monitoring the power consumes and the state of a building, finding faults along the net, detecting illegal electricity usages and to solve the so-called last mile problem , that is the problem related to the final leg of delivering connectivity from a communications provider to a customer. In fact a cheap possibility to cover this final leg is using powerline communication. The intent of this work is therefore to illustrate, going into more details, advantages and disadvantages of the powerline communication systems (PLCS), to show the differences between PLCS for power distribution net and PLCS for home and building environments, to indagate the methods to send data over the powerline, to explain which are the automations that is possible to connect and to control in a powerline domotic system and to show some case studies tackled by the authors

    Design and Performance Evaluation of Residual Generators for the FDI of an Aircraft

    Get PDF
    In this work, several procedures for the fault detection and isolation (FDI) on general aviation aircraft sensors are presented. In order to provide a comprehensive wide–spectrum treatment, both linear and nonlinear, model–based and data–driven methodologies are considered. The main contributions of the paper are related to the development of both FDI polynomial method (PM) and FDI scheme based on the nonLinear geometric approach (NLGA). As to the PM, the obtained results highlight a good trade–off between solution complexity and resulting performances. Moreover, the proposed PM is especially useful when robust solutions are required for minimising the effects of modelling errors and noise, while maximising fault sensitivity. As to the NLGA, the proposed work is the first development and robust application of the NLGA to an aircraft model in flight conditions characterised by tight–coupled longitudinal and lateral dynamics. In order to verify the robustness of the residual generators related to the previous FDI techniques, the simulation results adopt a typical aircraft reference trajectory embedding several steady–state flight conditions, such as straight flight phases and coordinated turns. Moreover, the simulations are performed in the presence of both measurement and modelling errors. Finally, extensive simulations are used for assessing the overall capabilities of the developed FDI schemes and a comparison with neural networks (NN) and unknown input Kalman filter (UIKF) diagnosis methods is performed

    A First Evaluation of a Multi-Modal Learning System to Control Surgical Assistant Robots via Action Segmentation

    Get PDF
    The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This paper presents a cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller

    Technical and Functional Validation of a Teleoperated Multirobots Platform for Minimally Invasive Surgery

    Get PDF
    Nowadays Robotic assisted Minimally Invasive Surgeries (R-MIS) are the elective procedures for treating highly accurate and scarcely invasive pathologies, thanks to their abil- ity to empower surgeons\u2019 dexterity and skills. The research on new Multi-Robots Surgery (MRS) platform is cardinal to the development of a new SARAS surgical robotic platform, which aims at carrying out autonomously the assistants tasks during R- MIS procedures. In this work, we will present the SARAS MRS platform validation protocol, framed in order to assess: (i) its technical performances in purely dexterity exercises, and (ii) its functional performances. The results obtained show a prototype able to put the users in the condition of accomplishing the tasks requested (both dexterity- and surgical-related), even with rea- sonably lower performances respect to the industrial standard. The main aspects on which further improvements are needed result to be the stability of the end effectors, the depth per- ception and the vision systems, to be enriched with dedicated virtual fixtures. The SARAS\u2019 aim is to reduce the main surgeon\u2019s workload through the automation of assistive tasks which would benefit both surgeons and patients by facilitating the surgery and reducing the operation time

    Development of a cognitive robotic system for simple surgical tasks

    Get PDF
    The introduction of robotic surgery within the operating rooms has significantly improved the quality of many surgical procedures. Recently, the research on medical robotic systems focused on increasing the level of autonomy in order to give them the possibility to carry out simple surgical actions autonomously. This paper reports on the development of technologies for introducing automation within the surgical workflow. The results have been obtained during the ongoing FP7 European funded project Intelligent Surgical Robotics (I-SUR). The main goal of the project is to demonstrate that autonomous robotic surgical systems can carry out simple surgical tasks effectively and without major intervention by surgeons. To fulfil this goal, we have developed innovative solutions (both in terms of technologies and algorithms) for the following aspects: fabrication of soft organ models starting from CT images, surgical planning and execution of movement of robot arms in contact with a deformable environment, designing a surgical interface minimizing the cognitive load of the surgeon supervising the actions, intra-operative sensing and reasoning to detect normal transitions and unexpected events. All these technologies have been integrated using a component-based software architecture to control a novel robot designed to perform the surgical actions under study. In this work we provide an overview of our system and report on preliminary results of the automatic execution of needle insertion for the cryoablation of kidney tumours

    Application of object-oriented modeling tools to design the logic control system of a packaging machine

    No full text
    The work presents the results of an application of object-oriented modeling techniques to design manufacturing systems logic controllers. In particular, the semantical aspects of specification languages like UML and Statecharts, widely used in many software engineering methods, are analysed and discussed, with regard to their adequacy for the industrial domain and their verification with formal methods. The paper ends with the description of a practical case of study, which shows that the proposed design and verification techniques can be successfully adopted in a real industrial framework, given domain-specific adaptation of object-oriented modeling languages

    Mechatronic objects encapsulation in IEC 1131-3 norm

    No full text
    This paper concerns with the definition and use of 'mechatronic objects' for the design of complex manufacturing system as large machinery. In particular the programming languages and structures defined under the IEC 1131-3 norm are considered regarding the software encapsulation of the mechanical system. The paper reports about a real application example of the proposed concepts showing effectiveness of the object-oriented framework for industrial applications

    Data Driven Approach for Wind Turbine Actuator and Sensor Fault Detection and Isolation

    No full text
    In order to improve reliability of wind turbines, it is important to detect and isolate faults as fast as possible, and handle them in an optimal way. An important component in modern wind turbines is the converter, which for a wind turbine control point of view normally provides the torque acting on the wind turbine generator, as well as measurement of this torque. In this work, a diagnosis strategy based on fuzzy prototypes is presented, in order to detect these faults in the converter, and isolate them either to be an actuator or a sensor fault. The fuzzy system is used since the model under investigation is nonlinear, whilst the wind speed measurement is highly noisy, due to the turbulence around the rotor plane. The fuzzy system consists of a set of piecewise affine Takagi Sugeno models, which are identified from the noisy measurements acquired from the simulated wind turbine. The fault detection and isolation strategy is thus designed based on these fuzzy models. The wind turbine simulator is finally used to validate the achieved performances of the suggested fault detection and isolation scheme

    Mechatronic design of a PM brushless motor-driven gear pump with sensorless control

    No full text
    The paper presents a review of all the design choices made during the realization of a novel hydraulic motor-pump-unit (MPU) for automotive applications, driven by a permanent magnet (PM) brushless motor with sensorless control. The MPU designed in this project is characterized by low voltage supply and high hydraulic output power, so that the choice of power electronic components have been particularly challenging, mainly because of conflicting requirements in terms of current rating and total cost. The experimental results obtained with a first MPU prototype demonstrates that the weak point of the complete mechatronic design is related to the volumetric efficiency of the gear pump, while the power converter and brushless motor assembly is characterized by a reasonable efficiency

    A Practical Approach to Object-Oriented Modeling of Logic Control Systems for Industrial Applications

    No full text
    The paper presents the results of an application of object-oriented modeling techniques to design manufacturing systems logic controllers. In particular, the semantical aspects of specification languages like UML and Statecharts, widely used in many software engineering methods, are analysed and discussed, with regard to their adequacy for the industrial domain and their verification with formal methods. The paper ends with the description of a practical case of study, which shows that the proposed design and verification techniques can be successfully adopted in a real industrial framework, given domain-specific adaptation of object-oriented modeling languages
    • …
    corecore